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An exact solution of the problem of bending of a semi-infinite beam lying on 
an elastic, inhomogeneous half-space E = E,,z' (0 < Y < 1) is obtained. The 
case when a force or a moment is applied at one end of the beam is solved num- 
erically and an unexpected fact, namely that the absolute magnitude of the max- 

imum relative bending moment increases with increasing v is discovered. 
An exact solution of the three-dimensional problem of bending of a semi-in- 

finite plate lying on a linearly deformable support of a general type, was obtain- 

ed in [l], where it was already shown that a solution of the corresponding plane 
problem can be obtained by performing a passage to the limit in the Fourier 

transform of the solution of the three-dimensional problem. This approach how- 
ever met with success only in the case when the support was a homogeneous 
elastic half-space, and even then complicated transformations were needed which 
could not be applied to the general case. This prompted the author of @] to pro- 

vide a solution to the plane problem without reference to the corresponding 
three-dimensional problem. His method, however, does not yield a solution for 
the case when the support has the form of a half-space, the modulus of elastic- 
ity of which varies according to a power law, not to mention the difficulties en- 

countered in its numerical application. 
In the present paper the method of passage to the limit from the three-dimen- 

sional problem is used to overcome the difficulties associated with the process 

of obtaining a solution to the plane problem. 

1. Let a semi-infinite plate (0 < J: ( 00, ---a~ < y < 00 ) of constant cylindri- 
cal rigidity D be frictionlessly supported by a linear deformable foundation, for which 

the settlement of the surface points (kernel of the foundation) caused by a unit force app- 
lied at the coordinate origin is given by the formula 

OD 

~0 (r) = & 1 u)i, (I) Jo W) df, r = fxz + y2 (1.1) s 

where tl is a positive paramzter, Jo(Z) is the Bessel function of the first kind and the 

function (P” (t) exhibits the following asymptotic behavior 

‘PO(f) = O(1), t-0; To(t) = tv [I -to(i l-00 @<v<i) 

We assume that the plate is acted upon bv a vertical load 9+ (2, Y) (‘I+ (XI Y) 3 0, 

2 < U), while an additional load y-(x, y) ( 
q” (2, y) = q+ (2) cos A. y, 

84 
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is applied to the free surface of the support. Then the bending deflections of the plate 
w (2, q) are equal, within the zone of contact, to the settlement of the surface points 
of the support and the contact stresses p (x, Y) have the form 

w (z, y); p (2. y) = Iwx (4; pa (4lcosQ (1-V 
The problem of determining the functions WA (,c) and pi (x) was solved in [l] and 
the functions were shown to be connected by the following relation: 

Du:,.(r) = (a, + a&-)+ + T/A(~) 

!/A C.1.) = ! 6 (.r - E) [q’ (E) - PA &)I $ (1.3) 

Here a, and “J denote arbitrary real constants which can be obtained from the condit- 
ion that the plate has a free edge 

tu(h2) ( + 0) - h2i_1w,.(+- 0) = 0, z@)(+o)- (2-ppw’,1’(+0)=0 (1.4) 

where !t is the Poisson ratio for the material of the plate. 
From (1.3) we can see that the problem reduces to that of determining a single func- 

tion ~1 (1.). Let us write the formula for px (x) obtained in [l] in the following form: 

Ph (.r) = czo [ A,cT,p’ (x) f LI~(D~’ (.c)] + n; (.r), 2co==3+v 

p),* (.r) = - g ); IA (- u) YA (u) e-iux du (1.5) 

O’(u) = J qf (.T) eiux ax, 
--m 

c-20 = 0D 

A, = a,ihYA (ih) + dlh [iYh (ih) + hY2’ (A)] 

A, = ia,YA (ih) + a,hYf’ (ih) 

The function Yx (u) appearing in these formulas is regular and different from zero in 
the upper half-plane (Irnu > 0) with the point at infinity excluded, and .satisfies the 
following functional equation: 

[‘PO (J/52 + h2) (u” + h2p -+ c2” (IL” + h2)-*]+ = Yh (u) YA (- u) (1.6) 

We write the solution of this equation which was given in [l], in the more convenient 
form: Yh(U) = (h - iu)v'(~"~l(h, I.qx,(h., u) 

- ln~~(ch, cu) = G,+(h, u)= & 5 lnff;% dX (Imu>O, k-f, 2) 
--m 
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In the second formula of (1.7) that branch of the logarithmic function is chosen, for 
which the eipansion 

which shall often be used in the following, holds near the univ. Inserting the expression 
for pa (s) given above into (I. 3) or into another, equivalent relation [l], we obtain 

ILL, (x) . Then we have 

A solution of the corresponding plane problem of bending of a beam is obtained by 
performing in the above formulas a passage to the Iimit with 1 --f 0 , in accord&me 
with (1.2). After this the arbitrary constants 
ons (1.4) at the free edge. These conditions 

A, and il i can be found from the conditi- 
can be written as 

,@f (.x) = lim wp (x) = 0 
h-4 

The process of obtaining these constants can 
of the following property (*) of the function 

( $- h)kq= g&g- 

when x=0 (n=2,$) (1.10) 

be considerably simplified by making use 

yh (x) appearing in (1.3) 

h~gh(x)=O when z=O (1.11) 

To prove this property, we shall write the function g (t) defined in (1.3) in the form 

1 
g (r) = 2n $ 

(23 + Li2)-* eiUf du (tso) 

Cf 

The contour C+ (C-) represents a closed curve surrounding all poles of the integrand 
function lying in the upper (lower) half-plane. Using this expression we can show that 

Similarly we have 

l ) This property of ?:A(“) representing a particular solution of a Fourier transform of the 
differential equation describing the bending of a plate was inferred by one of the authors 
from an ~published result due to M.G. Krein and presented by him at a seminar at 
Odessa Civil Engineering Institute in 1955. 
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-$($ -I.)” g(f)=& $ (u-iih)-*iuP’du=O (t<O) 
c- 

Equation (1.11) now follows from the last two relations. The property (1.11) which has 
just been proved, makes possible the assertion that the conditions (1.10) at the free 

edge will hold when a, = a, = 0 or, by virtue of the formulas appearing in (1.5) 

when A, = A, = 0. 
Indeed, for this to be true it is sufficient that 

un (z, 0) = 0 when z = 0 (n = 2, 3) 
. 

The validity of the latter can be shown by comparing the right hand sides of the formulas 
for WA (2) appearing in (1.3) and (1.9) with k -D 0 ando, = cr, = Oand with the prop- 

erty (1.11) taken into account. 
Taking the above argument into consideration, we obtain the following expressions 

for the bending deflections w (z) and the contact stresses p(S) : 
a 

Dw (2) = & 1 [Q- (u) - 10 (-u) Yo @)I m%J (u) f?-**= du 

cm 

p(s) = -g $ 1,(-u) Y&)e+du 

As we see, the problem reduces to that of determining the functions Yy, (U) and 

1, (4. . To find the first function, e. g., we clearly must perform the limiting pass- 
age as h + 0 in the right-hand side of the second formula of (1.7). This presents no 

difficulties when k = 2 , but becomes almost impossible when k = 1 . It was done 
in [l]. but only for the case Y = 0 and the process involved complex transformations 

of the integral in (1.7). 
Below we give a method of transforming the integral of the type (1.7) into the form 

suitable for executing the limiting passage mentioned above and for application of num- 
erical methods to the results obtained. 

The limiting passage h + 0 in (1.6) needed for the determination of 1, (U) is conn- 

ected intrinsically with the need for additional information concerning the support and 

the load, and will therefore be realized for a support of a specific type. 

2. It can be verified that in the present case we have 

Gk (h, & CQ) = 1, GI, (A, - 5) = GI, (h 5) 

]nGk(h,s)=O(IzI-“) lzl--t=~ (k=l,2; e>,f) (2.1) 

Moreover, the logarithmic derivatives of the functions Gh (h, Z) are integrable every- 

where in the interval (- oo < z < ca). Integration by parts of (1. ‘7) use of the prop- 
erties (2.1) of Gk (h, 2) and subsequent reduction to a semi-infinite integral, yields 

(k = 1, 2) (2.2) 

Using now the bilinear transformation z = - i (5 + 1) (5 - I)-’ we can map the 
upper half of the z -plane into the unit circle in the 5 -plane. 
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Then the formula (2.2) becomes 

g, (a, 5) = Gf (h, - is) = (2.3) 

+JI*(i+~&g Gd2x) 
k ' 

G + gk, Ob) 

0 0 

m 

gk.O@) = -$s 
dGk 

0 
arctgz G, (h, z) (2.4) 

Combining the two integrals in (2.3) into a single integral defined on the whole of the 
real axis and utilizing (1.8), we obtain 

gk th, 5) = 2 gk, n @‘) 5”~ 

n=o 

gk, n @I = - & 5 (s,” Gk;;,kz) (t f ‘1: ; ) (2.5) 

--co 
t... 

When k = 1 , the coefficients g,,, (A) of the last expansion, by virtue of (1.7), have 
the form m 

g1.0 (A) =+s rk (x) J: arctg 5 G?X 
0 

rh-l (x) = 11 +yG + h2)y (~2 + 12) 

Following [3], we now transform the above formula using the contour integration. Omi- 
tting the intermediate steps, we give the final result 

&?I,, h/c = -$ [~(~i”+c2-~o(~)b;2”]+h,(h) (r&=&2,...) 

‘x-i * 
h,(A) + - cm( 1 R, (4 2 

Ajc 
x+1 cax‘J - I.2 

dX 

KA (5) = 
(xl - c-21b2 )” cos ‘/am 

1 + 2 (9 - ,-2h2)o sin l/znv + (9 - C-2l.2)2” 
(2.6) 

aj = vbj’ - h2, Imaj>O (i=i, 2); b,,, = c =P (1_ Q’) (‘I’ = &) 

When h-=2 , we perform the substitution x=tg’/,q in the integrals of (2.4) and (2.5) 

and obtain 
n 

g2,o(h) = - & [wA+(rp)= -&A*@)& 
. 
0 0 

* 

6 
aA* (cp) = In G2 (h t’s V2’P) 
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Using (2.5) we now make h 3 0 in the expression for VA (u) given in (1.7). Summing 
the resulting weakly convergent series and using (1.8), we obtain 

Y’,(~cu)= 2~~u~~ ,142 [1 + (G,‘tgs ‘(‘4+ ‘)I-lexp [- H (24) - HI @)I 

H (u); H,(u) = ji [h,; gnl (fg (2.7) 
?a=@ 

The coefficients of the last expansion are given by 

go = - + = ‘p &?o* (cp) = s -$o* (cp)& 
0 0 

gnsk!$L~ 
x 

sin ncp dg,* (rp) = * 1 g,* (cp) cos ncp drp (2.8) 
0 0 

go* (cp) = In ii + c-v W112wo Gg l12w)l - h(1 + W l12cp) 

ho = 2% i arctgxdx , 
n o x (i$ x2”) 

h, = ~~(2$)?$9 & In = *, 2,. . *) 

” 

The last two of the above formulas can be written in the form 

ho =$![a* + xstv arctg x 
1 

ds 
- 
1 + z2@ 

0 

h 2m=~~(+=$-$%ix, h,_,rO (m=i,2,...) 

0 
more suitable for numerical work (*) and obtained by dividing the interval of integration 

into two subintervals, (0 ,I) and (1, 00). The identity It,, 3 0 (m = 1,2,. . .) implies 
the following property 

H (u) = H (l/u) (2.9) 

which is useful for computations, and will be employed later. 
We can see from (2.8) that the coefficients g,, are the Fourier coefficients of the 

function go* (cp) or of its derivative. For this reason the coefficients can be convenie- 

ntly computed using the method of trigonometric interpolation [4]. 

3, Let us apply the above formulas to the case of a support consisting of an elastic 
half-space z > 0 , the modulus of elasticity E = EOzv (0 4 Y < 1) of which varies 
with depth and the kernel of which can be obtained from (1.1) by putting [5] 

8 = (1 - CL4 r ma - Vav) qc 
2 v/RJw (1. + l/e) (i + v) 

sin nq 
2 ’ ‘PO V) = t” 

-.L= 
1-j-V 

1 VW c 
-l-_llo’ r Ii+ ‘/a (1 + v + 411 

= 2JJ [I+ l/a u+ v - q)l 
r (2 + VI 

(3.1) 

l ) Computations performed below have shown the rapid convergence of the series defin- 
ing H (II): the choice of m = 5 was sufficient to obtain a value accurate to three sig- 
nificant figures. 
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where pO is the Poisson ratio for the support material. Moreover, we shall assume that 
the additional load is absent (q’ (z) SI 0) and that the load acting on the plate is 

given by 
q(z,y) =6(x--b)cos hy, b>O 

where 6 (5) is the Dirac delta function. Then the integral 1~ (z) appearing in (1.5) 
will assume the form 

m 

Ih(z)=&S : 
-itVh (ZL) 

_m (u $ Y)2(u - 2) du (3.2) 

Since we are considering a particular type of support, the above formula as well as 

(1.5) and (1.9) can be further transformed using the methods of contour integration. 
This requires the knowledge of the singular points of the function Yh (u) in the lower 
half-plane. To find them we proceed to write the function in the following form using 

(1.6) and (3.1): 

YA (u) = (u” + q2 fh (u) yh-’ (- q, fh (u) = [cSU + (zZ + qy 

This shows that in the lower half-plane Ya (u) has one branch point r,~ = -_ih and 

the poles u = -cq (j = 1, 2) [3] determined by the formula appearing in (2.6). The 
residues and the difference in the values of the function at the edges of the cut (- ih, 
-ioo) are given by 

Res [\yx (u)]ua-oLj = - b;-’ [~(JWYA (ad]-’ (j=1, 2) 

yA (- is + 0) - yx (- is - 0) = - 2i (ss - As)’ c-~RA (a I c) F-r (is) (3.3) 

Using the latter we now transform (3.2) be deforming the path of integration into a loop 
[S, 71 enveIoping the ray (-ih, -i 30). This yields 

Ix (2) = 1x* (2) - YA (2) e-ibz (z” + hy-2 (3.4) 

IA’ (4 
00 

t 

c-2-* =- - 35_ s R, (t) embet 

VC 
Y, (ict) (z + ict) dt - G $5gklgy Z) 

Inserting now (3.4) into (1.5) and (1.9), changing the order of integration and transfor- 
ming the inner integral in the manner similar to that already employed, we arrive at 

m IA* (ict) 
u(n) (z, h) = - f \ Arc w Rx V) (-- v e- ctx & - 

- i (20)~’ i bi2 (iaj)alyh (ij) 
n eiajxz * tuj) 

+ 
j=l 

Du? (x - b, h) (n =o, i, 2,3) 

m 2 iUj[Xi 

u, (2, h) = f \ Rh (t) (cat2 - I?)-2 e-ctlrl dt + & 2 + 
Ajc j=l J J 

(cata _J.2) R,, (t) YAel (ict) IA* (id) err fit - 
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ca 2 
eiajlXl 

pm (z, h) = - f \ Rh (t) e-ct’rl dt + & 2 - 
fit 

j=l ajb3"' 

Setting & = 0 in (3.4) and (3.5) and taking into account (2. ‘0, we obtain 

cM (w) = M* (E) = f i S(t) [e-@f, (t, E) - I (t; p) Pe-Et] dt 

- d(Ev P) + Mcc (E - P) 

I (t; p) = (2”n)-’ j As (2) e-k (t + q-1 dz - fs (t; p) 

W)=R,(y-‘(1 +t)+ + [&+)aW(l/~r(l +q]eW(t) 

fl (t; E) = 21-0a cos (6 - r + j cos r) + t sin (6 + f coa r) 
(1 + 21 sin 7 + P) exp (f sin 7) (3.6) 

f2 (E, P) = (sin V/4r (5 - y”) -t (P + E) CO.9 ?I + 
+sin-l~cos[(l+Y)~+(~-E)co~~l~~aexp[-(~+P)~in~l 

a = (26-$-1 ~~~“2(v-5) l/d”’ (1 + Y) cos l/& (1 + v) exp H (a, / c), 

6 = ‘/ST (1 - v) (5 - Y) 
Here we have introduced the dimensionless abscissa 5 = cz and the dimensionless dis- 
tance p = cb between the point of application of the force and the beam end. Follow- 
ing [l] we shall call the quantity M* (g) th e reduced bending moment. Similarly. we 

shall call p* (E) and Q* (5) h t e reduced contact stress and the reduced transverse 

force, connected with the true p (z), Q (2) and M* (E) by the formulas 

Q*(E)= a(f), P*(g)=+P($), Q*(&=$& p*(&f$l 

The symbol M, (E) appearing in (3.6) denotes the reduced bending moment in an 
anfinite beam acted upon by a unit force at x = 0 and determined bv the formula 

1 

M,(Q = F 1 *l+ve-'E't + Ls+ve-'U't &-@-lexp(-_lil siny)sin(Ifl cos y-y) 
o 1+ 2t’+” cosam + t&t* 

(3.7) 
which coincides with that given in [3]. 

As we know, in the analysis of the semi-infinite beams the most interesting case en- 
countered is that, in which the end of the beam is acted upon by a force or a moment. 
We arrive at the case of force loading by setting in (3.6) fi = 0, and at the case of 
moment loading by differentiating (3.6) with respect to fi and setting p = 0 again. 

A different, simpler method can be used to obtain formulas for computing the forces 
in end-loaded beams. First we set in (1.9) u (5, A) = 0, then perform a passage to 
the limit with h + 0. In other words, the reduced bending moment in a semi-infinite 
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end-loaded beam can be obtained using the formula 

M* (5) = - c yz [A,FP’ (E I c) + A,#’ (E I c)] (3.8) 

To obtain formulas suitable for computation we transform the expression for Fin’ (x) 

appearing in (1.9) by applying the methods of contour integration prior to the limiting 

passage h -+ 0 . As the result we have 

Setting h = 0, in the above formulas we obtain, of the basis of (3.8) and using (2. g), 

M* (E) = - i Bj [(- I)’ J”’ (E) + v’j’ (E)] (3.9) 
j=O 

q(j) (E) = 2a -$ {cos [llsy (1 - Y”) + 5 cos y] exp (- E shy)} 

B, = icaAo, B, = cl+Qli 
1 

J(I) (E) = -+s iti,-Et + p-u-ie-E/t 1 s (q dt 

0 

In addition, we have the following property: 

dJ’j’ /dE = - .P+1) (EJ (i = 0, 1, 2, 3) 

It can easily be shown that the arbitrary constants in (3.9) are given by 

i: Bd-1)” ( )P) (0) + qP’ (O)] = 1 - m 

n=O (m--1, 2) 

$ B, [(_ l)n+l J@+‘) (0) + #*+1’(o)] = 2 - m 
n=o 

The case n = 1 corresponds to a beam loaded by a unit force, while m = 2 corre- 
sponds to the unit moment loading. 

The formula (3.9) was used to calculate the values of the reduced bending moment 
as well as the transverse force Q* = dM+ / dE and the contact stress p* = CPM* I d? 
for both,the case of a beam loaded with a unit force (Table 1). and with a unit clock- 
wise moment (Table 2). It must be remembered here that the figures given represent 
the decimal parts of the values. The integral parts are equal to zero except the ones 
indicated by asterisks where the integral parts are equal to unity. The negative values 
are indicated by a bar on top. 

The data given in tables were computed for three values of v (Y = 0.1,0.5 and 0.9) and 
show that in the case of v = 0.1 the results agree, as expected, with those of [l]. The 
major result emerging from these computations however-is the discovery of an unexpected 
fact, namely that the absolute magnitude of the maximum bending moment increases 
with increasing parameter Y describing the rigidity of the support (Table 1). This 



Plane problem of bending of a semi-infinite beam 93 

induced the authors to explain a similar fact encountered in the case of an infinite beam, 
for which a simpler formula (3.7) defining the reduced bending moment under the action 
of a concentrated unit force applies. The values. of this moment taken from the diploma 

TABLE 1 
- 

t - 

- 

-W Q* P 

0.9 0.i 

0 
170 
289 
368 
414 
433 
433 
417 
391 
358 
321 
137 
027 

iP 
478 
173 
141 
049 
013 
056 
082 

Yz 
107 
075 
036 

V 

\ 4 
0.5 0.0 0.1 9.5 0.9 0.1 

0 
131 
205 
245 
264 
267 
260 
246 

% 
186 
091 
037 

0.5 

0 
154 
252 
311 
342 

:; 

z 
259 
249 
112 
032 

0.0 
0.2 
04 
0.6 
0.8 
1.0 

::: 

::: 
2.0 
3.0 
4.0 

6’ 
714 
488 
304 
158 

i-i! 
108 
151 
178 
193 
153 
069 

00 

309* 
805 
546 
377 
257 
169 
104 
056 
021 
004 
044 
031 

3:. 
953 
705 
521 
378 
265 
176 

z 
012 
065 
050 

2& 
019* 
822 
650 

% 

9 

043 
085 
073 . , 

TABLE 2 

--Q M’ P 

V 

\ 4 

0.0 
0.2 
0.4 
0.6 
0.8 

::; 

::; 

;-: 
3:o 
4.0 

0.i 0.5 0.9 0.i 0.5 0.0 0.9 

-00 

766 
506 
306 
ED 
m 
E 
168 
195 
208 
160 
070 

0* 
966 
897 
809 
714 
618 

:z 
326 

z; 
029 
028 

0.1 

--oo 

774 
265 
022 
112 

z 
242 

z! 
111 
039 

0.5 

-00 

835 

m 

3xl 

FEi 

$ 

222 
219 
136 
053 

0 
397 
493 
520 
509 
479 

% 
341 
293 
249 
087 
015 

0 
280 
403 
463 

% 
455 
420 

:g 
292 

:: 

0’ 
945 
855 
753 
649 

% 

Z! 
240 
186 
027 
018 

0+ 

979 
928 
856 
771 
680 

F! 

i 
036 

0 

191 
317 
398 
443 

:$I 

II 
331 
137 
024 

TABLE 3 

thesis of V. V. Vorotyntsev are given in Table 3, which shows that the maximum 
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positive (stretching of the lowest filament) reduced moment decreases with increasing 
v , while the numerical value of the maximum negative moment increases just as in the 

case of a semi-infinite beam discussed above. 
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SHOCK WAVE PROPAGATION IN ELASTIC-PLASTIC MEDIA 

PMM Vol. 36, Wl. 1972, pp.106-116 
G, I. BYKOVTSEV and L. D. KRBTOVA 

(Voronezh) 
(Received April 24, 1969) 

It is shown that neutral shock waves, on which the plastic deformations are con- 
tinuous, and waves on which the.plastic deformations are discontinuous, can 
exist in ideal and hardened elastic-plastic media. Conditions for the existence 
of waves of the second kind are written.down, the velocities of all the mentioned 

waves are determined in ideally plastic bodies for arbitrary convexity of the 
flow and Tresca conditions, and in hardened bodies for kinematic and isotropic 
hardening. Relationships are obtained for the discontinuities upon passage through 
the wave surface. 

The behavior of shock waves during propagation under Mises and Tresca flow 
conditions is investigated by using the kinematic second-order compatibility con- 
ditions. It is shown that the shock wave intensity varies according to laws of 
geometric optics. 

Questions of shock wave propagation in elastic-plastic media have been exa- 
mined in [l - 31. Relationships on the shock waves in hardened elastic-plastic 
bodies have been derived under the assumption that simple loading occurs on 

the shock Cl]. Reltionships on shock waves in plane ideally elastic-plastic bod- 
ies have been obtained in 83 by using the theory of generalized functions. The 


